

SUPERVISOR INFORMATION

First and Last name José Campos

URL of supervisor webpage https://jose.github.io

Department Department of Informatics Engineering

Field(s) of research Software Security, Software Vulnerabilities, Empirical Software
Engineering, Mining Software Repositories

PROJECT PROPOSAL

Title (optional) Inter-Procedural Vulnerabilities

Brief project description

In software security, organizations face significant challenges due to the increasing complexity
and volume of vulnerabilities, mostly stemming from developers’ lack of expertise in
effectively addressing these issues. As an attempt to detect, analyze (e.g., the root cause and
the impact), and repair software vulnerabilities, researchers have proposed several data-
driven approaches (e.g., machine-learning-based and deep-learning- based approaches).
Although such approaches achieve convincing performance in the laboratory environment,
their performances drop dramatically in the real-world scenario [1]. A prior work [2] observed
20% to 71% of vulnerability labels are inaccurate and 17% to 99% of vulnerability data were
duplicated in four state-of-the-art software vulnerability datasets [3, 4, 5, 6]. The security
vendors, such as National Vulnerability Database (NVD) [7] and Snyk [8], are important sources
for collecting real-world vulnerability data. It is common to extract the patch information from
the disclosed vulnerability records (i.e., Common Vulnerabilities and Exposures, CVEs) to trace
and identify real-world vulnerabilities and the corresponding fixes. However, it is challenging
to improve the data quality.

When constructing a vulnerability dataset, the current practice [5] simply considers the
original functions vulnerability dataset as the vulnerable functions. However, for an inter-
procedural vulnerability---a vulnerability that have vulnerable code snippets scattered among
functions or files---, a single vulnerable code snippet in one function is not necessarily meant
to be vulnerable by itself. Moreover, the granularity of the current vulnerability datasets is
usually at the function level and the function-level information is not enough for learning the
pattern of inter-procedure vulnerabilities, which may introduce bias in model training. D2A [5]
provided the bug trace information which can be used for inter-procedural vulnerabilities
detection. However, D2A is constructed using the static tool, suffering from the inaccurate
labeling problem [2] and the limitation of limited vulnerability types.

Given most vulnerabilities are inter-procedural [5, 9], it is crucial to provide a dataset that
considers inter-procedural vulnerabilities and provides information that is more than a single
function. That is, this project proposal aims to investigate and develop novel methodologies
and approaches to first detect and then describe inter-procedural vulnerabilities.

[1] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based vulnerability
detection: Are we there yet,” IEEE Transactions on Software Engineering (TSE), 2021.

[2] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software vulnerability
datasets,” in Proceedings of the 45th International Conference on Software Engineering (ICSE).
IEEE, 2023, pp. 121–133.

[3] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability dataset with code
changes and cve summaries,” in Proceedings of the 17th International Conference on Mining
Software Repositories (MSR), 2020, pp. 508–512.

[4] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by
learning comprehensive program semantics via graph neural networks,” Advances in neural
information processing systems (NIPS), vol. 32, 2019.

[5] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo, A. Morari, and Z. Su,
“D2a: A dataset built for ai-based vulnerability detection methods using differential analysis,”
in Proceedings of 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp. 111–120.

[6] T. Boland and P. E. Black, “Juliet 1.1 c/c++ and java test suite,” IEEE Computer Architecture
Letters, vol. 45, no. 10, pp. 88–90, 2012.

[7] “National vulnerability database.” [Online]. Available: https://nvd.nist.gov/

[8] “Snyk.” [Online]. Available: https://security.snyk.io/vuln

[9] W. Zheng, Y. Jiang, and X. Su, “Vu1spg: Vulnerability detection based on slice property
graph representation learning,” in Proceedings of the 32nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2021, pp. 457–467.

